3D transition metal fluorides have long been recognized as appealing low-cost, high-energy-density cathode materials for Li-ion batteries, but their conversion-type lithiation mechanism induces structural and morphological changes, limiting their cycling stability. Our findings now suggest that metal fluorides may undergo single-phase lithiation when crystallized in a pyrochlore structure, enabled by the presence of Li-ion storage sites within interconnected hexagonal channels. By conducting a detailed analysis of pyrochlore iron(III) hydroxy fluorides during lithiation using operando X-ray absorption spectroscopy, X-ray total scattering, and electron microscopy, we provide evidence for a possible single-phase lithiation mechanism and robust structural stability. These results challenge the traditional view of conversion-type lithiation in metal fluorides and highlight their potential for achieving high cycling stability and eventual commercialization in Li-ion batteries.