Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
In the rapidly evolving landscape of machine learning research, neural networks stand out with their ever-expanding number of parameters and reliance on increasingly large datasets. The financial cost and computational resources required for the training p ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.
Quantum mechanics gives predictions that are inconsistent with local realism.
The experiment proving this fact (Bell, 1964) gives a quantum proto ...
State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical ...
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.
Altho ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...