This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...
We introduce an algorithm to reconstruct a mesh from discrete samples of a shape's Signed Distance Function (SDF). A simple geometric reinterpretation of the SDF lets us formulate the problem through a point cloud, from which a surface can be extracted wit ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Graph neural networks (GNNs) have demonstrated promising performance across various chemistry-related tasks. However, conventional graphs only model the pairwise connectivity in molecules, failing to adequately represent higher order connections, such as m ...
Robots outside of the fenced factories have to deal with continuously changing environment, this requires fast and flexible modes of control. Planning methods or complex learning models can find optimal paths in complex surroundings, but they are computati ...
An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.
Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed ...
In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
Minimising the longest travel distance for a group of mobile robots with interchangeable goals requires knowledge of the shortest length paths between all robots and goal destinations. Determining the exact length of the shortest paths in an environment wi ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...