We demonstrate the importance of addressing the F vertex and thus going beyond the GW approximation for achieving the energy levels of liquid water in manybody perturbation theory. In particular, we consider an effective vertex function in both the polariz ...
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
The scientific progress is significantly transforming contemporary society with the introduction and widespread application of technologies like artificial intelligence and quantum computing. Despite their profound impact, these technologies necessitate en ...
This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
To characterize in detail the charge density wave (CDW) transition of 1T-VSe2, its electronic structure and lattice dynamics are comprehensively studied by means of x-ray diffraction, muon spectroscopy, angle resolved photoemission (ARPES), diffuse and ine ...
The electronic density of states (DOS) quantifies the distribution of the energy levels that can be occupied by electrons in a quasiparticle picture and is central to modern electronic structure theory. It also underpins the computation and interpretation ...
The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The th ...
Smearing techniques are widely used in first-principles calculations of metallic and magnetic materials where they improve the accuracy of Brillouin-zone sampling and lessen the impact of level-crossing instabilities. Smearing introduces a fictitious elect ...
Two-dimensional dopant layers (δ-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs ...