Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...
In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Peclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Str ...
For a high-dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in terms of both computational cost and numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g., to the ge ...
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...
Isogeometric analysis is a powerful paradigm which exploits the high smoothness of splines for the numerical solution of high order partial differential equations. However, the tensor-product structure of standard multivariate B-spline models is not well s ...