Until about the year 2030, current-day nuclear power plants (NPPs) will be replaced by so-called Gen-III or Gen-III+ units, which are mainly based on light water reactor technology. The principal new features are increased safety and improved economical effectiveness. However, these systems use the same fuel forms and are based on the same fuel cycle. Beyond 2030, the interest is likely to shift towards fourth generation NPPs, which offer the possibility of complete fuel cycle closure. Generation-IV reactor concepts include both thermal and fast systems, and involve a wide range of fuel forms and compositions. The present research has been focused on the development of a thermo-mechanical model for the innovative fuel design of the Generation-IV Gas-cooled Fast Reactor (GFR). The principal distinctive feature of the fuel is that the fuel pellets are arranged within plates which enclose an inner honeycomb structure. Apart from the geometry, the usage of new materials is foreseen. Thus, the fuel pellets are of mixed uranium-plutonium carbide, and the cladding is bulk or fiber-reinforced SiC. The setting up of an appropriate materials database was thus the very first task which had to be carried out in the current work. The main purpose of the currently developed model is to provide reliable data, in the context of transient analysis, for the calculation of the principal neutronic feedbacks in the GFR core, viz. the fuel temperature for the Doppler effect and the fuel plate deformation for the axial core expansion effect. None of the available fuel modeling codes is suitable for a realistic simulation of the GFR fuel, as the inner honeycomb structure cannot be explicitly taken into account. The development work has been carried out largely in the context of PSI's generic code system for fast reactor safety analysis, FAST. Thereby, it has mainly involved extension of the thermo-mechanical code FRED, developed originally for the modeling of traditional rodded fuel. Within the FAST system, FRED is coupled to the TRACE code for the thermal-hydraulic modeling, so that the present work has comprised not only the development of a 2D FRED model for the plate-type GFR fuel, but also the implementation of corresponding changes in TRACE for ensuring appropriate information exchange between the two codes. The 2D thermo-mechanical model has been developed with certain assumptions. Since no experimental data exist for this fuel type, benchmarking of the new simulation tool was carried out by building up a detailed 3D model using the finite-elements code ANSYS. The 3D model has, moreover, been employed for conducting certain supplementary studies to obtain an in-depth understanding of the thermal and mechanical behavior of the fuel. It was found how the complex, multi-dimensional, heat transfer in the plate-type fuel accounts for the discrepancies between results of 2D and 1D simulations. Furthermore, it was shown that, under certain conditions, the temperature fi
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari, Pavel Frajtag, Tom Mager
Andreas Pautz, Vincent Pierre Lamirand, Oskari Ville Pakari