Fabien Sorin Sep 2002-Oct 2007
Ph.D., Department of Materials Science and Engineering, MIT, USA.
Supervisor: Prof. Yoel Fink; Thesis: Multi-material, Multifunctional Fiber Devices.
After graduating with an engineering degree and a Master of Science in Physics from the Ecole Polytechnique in Palaiseau, France, Prof. Sorin joined the department of Materials Science and Engineering at the Massachusetts Institute of Technology (MIT) in Cambridge, USA for his graduate studies. He worked as a research assistant in the Photonic Bandgap Fibers and Devices Group of Professor Yoel Fink and graduated with a PhD in 2008. His PhD thesis led to the development of a new class of fiber material and devices and he was a pioneer of the field of multi-material fibers.
Mar 2008-Oct 2010
Postdoctoral Associate and Research Scientist, Research Laboratory of Electronics, MIT.
He then joined the Research Laboratory of Electronics at MIT as a Postdoctoral Associate, and continued as a Research Scientist associate, where he conducted independent research in the emerging field of multi-material fibers and was involved and led a variety of projects in fundamental research as well as in collaborations with local start-ups.
Apr 2011 Feb 2013
Research Engineer, Saint-Gobain Recherche, Aubervilliers, France.
Surface du Verre et interface Group
In 2011, prof. Sorin returned to Europe and joined the company Saint-Gobain in the Saint-Gobain Recherche center, its biggest research center located near Paris in France. As a research engineer, he developed a new research thrust investigating new photonic materials and nanostructures for the energy and building industries. In particular, he and colleagues developed innovative processing approaches to deploy photonic nanostructures for light management over large area substrates, for applications in energy harvesting and saving, and for building materials and windows.
Mar 2013 Present
Assistant Professor tenure-track, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Head of the Photonic materials and fibre devices laboratory (FIMAP)
Since March 2013, he is in the department of Materials Science (IMX) at the Ecole Polytechnique Fédérale de Lausanne (EPFL) as an assistant professor tenure-track. He is starting a research group on photonic materials and fiber devices (FIMAP), continuing on developing innovative materials processing approaches and photonic device architectures to develop new solutions in energy harvesting, saving and storage, in sensing and monitoring, health care and smart fabrics.
Niels QuackProf. Dr. Niels Quack received the M.Sc. degree from Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, in 2005, and the Dr.Sc. degree from Eidgenössische Technische Hochschule Zürich (ETH), Zürich, Switzerland, in 2010. From 2011 to 2015, he was Postdoctoral Researcher and Visiting Scholar with the Integrated Photonics Laboratory, Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA. From 2014 to 2015, he was Senior MEMS Engineer with Sercalo Microtechnology, Neuchâtel, Switzerland. He is currently an SNSF Assistant Professor with Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. He has authored and co-authored more than 50 papers in leading technical journals and conferences. His research interests include photonic micro and nanosystems, with an emphasis on diamond photonics and silicon photonic MEMS. He is Steering Committee Member of the IEEE International Conference on Optical MEMS and Nanophotonics (OMN) and served as General Chair of the IEEE OMN 2018 and the Latsis Symposium 2019 on Diamond Photonics. He is a Senior Member of IEEE, Member of The Optical Society (OSA) and life member of SPIE.
Klaus KernKlaus Kern is Professor of Physics at EPFL and Director and Scientific Member at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. He also is Honorary Professor at the University of Konstanz, Germany. His present research interests are in nanoscale science, quantum technology and in microscopy at the atomic limits of space and time. He holds a chemistry degree and PhD from the University of Bonn and a honorary doctors degree from the University of Aalborg. After his doctoral studies he was staff scientist at the Research Center Jülich and visiting scientist at Bell Laboratories, Murray Hill before joining the Faculty of EPFL in 1991 and the Max-Planck-Society in 1998. Professor Kern has authored and coauthored close to 700 scientific publications, which have received nearly 60‘000 citations. He has served frequently on advisory committees to universities, professional societies and institutions and has received numerous scientific awards and honors, including the 2008 Gottfried-Wilhelm-Leibniz Prize and the 2016 Van‘t Hoff Prize. Prof. Kern has also educated a large number of leading scientists in nanoscale physics and chemistry. During the past twenty-five years he has supervised one hundred PhD students and sixty postdoctoral fellows. Today, more than fifty of his former students and postdocs hold prominent faculty positions at Universities around the world.
Mihai Adrian IonescuD'origine et de nationalités roumaine et suisse, Mihai-Adrian Ionescu est né en 1965. Après le doctorat en Physique des Composants à Semiconducteurs de lInstitut National Polytechnique de Grenoble, M. Ionescu a travaillé comme chercheur post-doctoral au LETI-CEA Grenoble, sur la caractérisation des diélectriques low-k pour les technologies submicroniques CMOS. Après une courte période au sein du CNRS, comme chargé de recherche 1ere Classe il a effectué un séjour post-doctoral au Center for Integrated Systems, Stanford University, USA. Actuellement il est Professeur Nanoélectronique à lEcole Polytechnique Fédérale de Lausanne.
Mohammad Khaja NazeeruddinDr. Md. K. Nazeeruddin received M.Sc. and Ph. D. in inorganic chemistry from Osmania University, Hyderabad, India. He joined as a Lecturer in Deccan College of Engineering and Technology, Osmania University in 1986, and subsequently, moved to Central Salt and Marine Chemicals Research Institute, Bhavnagar, as a Research Associate. He was awarded the Government of Indias fellowship in 1987 for study abroad. After one year postdoctoral stay with Prof. Graetzel at Swiss federal institute of technology Lausanne (E P F L), he joined the same institute as a Senior Scientist. His current research focuses on Dye-sensitized solar cells, Hydrogen production, Light-emitting diodes and Chemical sensors. He has published more than 380 peer-reviewed papers, ten book chapters, and inventor of 40 patents. The high impact of his work has been recognized with invitations to speak at over 80 international conferences, including the MRS Fall (USA, 2006) and Spring 2011 Meetings, GORDON conference (2014), and has been nominated to the OLLA International Scientific Advisory Board. He appeared in the ISI listing of most cited chemists, and has more than 33'500 citations with an h-index of 89. He is teaching "Functional Materials" course at EPFL, and Korea University; directing, and managing several industrial, national, and European Union projects on Hydrogen energy, Photovoltaics (DSC), and Organic Light Emitting Diodes. He was awarded EPFL Excellence prize in 1998 and 2006, Brazilian FAPESP Fellowship in 1999, Japanese Government Science & Technology Agency Fellowship, in 1998, Government of India National Fellowship in 1987-1988. Recently he has been appointed as World Class University (WCU) professor by the Korea University, Jochiwon, Korea (http://dses.korea.ac.kr/eng/sub01_06_2.htm) and Adjunct Professor by the King Abdulaziz University, Jeddah, Saudi Arabia. Michael GraetzelProfessor of Physical Chemistry at the Ecole polytechnique fédérale de Lausanne (EPFL) Michael Graetzel, PhD, directs there the Laboratory of Photonics and Interfaces. He pioneered research on energy and electron transfer reactions in mesoscopic systems and their use to generate electricity and fuels from sunlight. He invented mesoscopic injection solar cells, one key embodiment of which is the dye-sensitized solar cell (DSC). DSCs are meanwhile commercially produced at the multi-MW-scale and created a number of new applications in particular as lightweight power supplies for portable electronic devices and in building integrated photovoltaics. They engendered perovskite solar cells (PSCs) which turned into the most exciting break-through in the history of photovoltaics. He received a number of prestigious awards, of which the most recent ones include the RusNANO Prize, the Zewail Prize in Molecular Science, the Global Energy Prize, the Millennium Technology Grand Prize, the Marcel Benoist Prize, the King Faisal International Science Prize, the Einstein World Award of Science and the Balzan Prize. He is a Fellow of several learned societies and holds eleven honorary doctor’s degrees from European and Asian Universities. His over 1500 publications have received some 220’000 citations with an h-factor of 218 (SI-Web of Science) demonstrating the strong impact of his scientific work.
Christophe Marcel Georges GallandJ'ai étudié à l'Ecole Polytechnique Paris (X2003) et obtenu mon doctorat en 2010 à l'ETH Zurich pour une thèse en optique quantique sur les nanotubes de carbone, dans le groupe de photonique quantique du Prof. Ataç Imamoglu. En tant que chercheur postdoctoral au Los Alamos National Lab (États-Unis), j'ai étudié la photophysique des boîtes quantiques individuelles dans les groupes de Victor Klimov et Han Htoon. J'étudiais les mécanismes responsables des fluctuations de fluorescence et comment les contrôler. J'ai ensuite rejoint l'Université du Delaware et le groupe de Michael Hochberg pour travailler dans le domaine émergent de l'optique quantique intégrée. Je menais des projets internationaux tels que la réalisation d'une source sur puce de photons corrélés intégrant des filtres optiques et des démultiplexeurs. De 2013 à 2016, je travaillais à l'EPFL dans le groupe du Prof. Kippenberg dans le domaine de l'optomécanique quantique avec une bourse Ambizione du Fonds national suisse pour la recherche scientifique (FNS). Mon travail s'est concentré sur la création d'états vibrationnels non classiques d'oscillateurs mésoscopiques et sur l'amplification des vibrations dans les molécules. Depuis mai 2017, je dirige le Laboratoire de Nano-Optique Quantique à l'EPFL en tant que professeur financé par le FNS au sein de l'Institut de Physique. Mon équipe étudie deux phénomènes principaux: (i) la dynamique vibrationnelle des molécules couplées à des cavités plasmoniques à l'échelle nanométrique, et (ii) les corrélations non classiques médiées par des quanta individuels de vibrations cristallines -- à température ambiante. Nous utilisons des outils spectroscopiques de pointe tels que les lasers femtosecondes et les compteurs de photons uniques pour obtenir de nouvelles informations sur la dynamique à l'échelle sub-nanométrique.
Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.