Laboratoire de systèmes d'information et d'inférence
Laboratoire
Publications associées (1 000)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Years of a fierce competition have naturally selected the fittest deep learning algorithms. Yet, although these models work well in practice, we still lack a proper characterization of why they do so. This poses serious questions about the robustness, trus ...
Deep learning has achieved remarkable success in various challenging tasks such as generating images from natural language or engaging in lengthy conversations with humans.The success in practice stems from the ability to successfully train massive neural ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...
The way biological brains carry out advanced yet extremely energy efficient signal processing remains both fascinating and unintelligible. It is known however that at least some areas of the brain perform fast and low-cost processing relying only on a smal ...
This paper focuses on over-parameterized deep neural networks (DNNs) with ReLU activation functions and proves that when the data distribution is well-separated, DNNs can achieve Bayesoptimal test error for classification while obtaining (nearly) zero-trai ...
Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function s ...
Speech recognition-based applications upon the advancements in artificial intelligence play an essential role to transform most aspects of modern life. However, speech recognition in real-life conditions (e.g., in the presence of overlapping speech, varyin ...
Natural language processing and other artificial intelligence fields have witnessed impressive progress over the past decade. Although some of this progress is due to algorithmic advances in deep learning, the majority has arguably been enabled by scaling ...
According to the proposed Artificial Intelligence Act by the European Comission (expected to pass at the end of 2023), the class of High-Risk AI Systems (Title III) comprises several important applications of Deep Learning like autonomous driving vehicles ...