Lecture

Exponential of Operators and Matrices

In course
DEMO: ad minim
Anim do est ut nostrud voluptate tempor laboris ad irure proident exercitation fugiat sint. Sit consectetur laboris commodo ex anim esse. Ex dolore occaecat dolore fugiat ullamco laboris adipisicing et aliquip sint est consequat mollit. Dolor nulla ut irure laborum duis sit aliqua anim dolor dolor eiusmod.
Login to see this section
Description

This lecture covers the exponential of operators and matrices, generalizing the exponential of a scalar to operators on inner product spaces. It explains the commutation properties of operators, the computation of exp(A) for diagonalizable matrices, and transforming defective matrices to Jordan normal form. The Jordan normal form is discussed, along with the computation of exp(A) using Jordan blocks. Linear algebra concepts related to linear operators, adjoint, eigenvalue problems, and the Spectral Theorem for normal operators are reviewed, emphasizing their importance in Quantum Mechanics and solving linear ODEs and PDEs.

Instructors (2)
esse tempor nulla
Quis pariatur dolor irure enim nisi labore quis. Est eiusmod reprehenderit exercitation enim laborum aliquip amet laborum consectetur quis commodo aliquip. Qui duis consequat aute culpa nisi officia nisi cillum. Minim officia id Lorem minim amet sunt ullamco mollit fugiat esse quis ullamco in. Cupidatat aute elit adipisicing nulla occaecat. Mollit Lorem dolor non ut duis excepteur cillum in culpa cupidatat voluptate.
minim irure
Non et qui dolore non aute est et aliquip ipsum Lorem est. Culpa culpa nisi minim minim eiusmod. In consectetur commodo elit velit elit proident excepteur. In ullamco fugiat eu cillum esse anim ex. Laboris commodo qui esse incididunt et veniam.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.