Lecture

Ehrenfest Theorem

In course
DEMO: eiusmod quis veniam et
Fugiat id nisi sunt laborum amet Lorem ut. Elit ad dolore aliqua irure qui sint sint. Tempor est dolore cillum cillum. Incididunt officia incididunt id occaecat. Nulla eu irure non anim nisi do in duis aute nulla. Quis eiusmod anim labore occaecat amet commodo. Irure velit deserunt enim do aliquip ut voluptate enim aliquip excepteur velit ea in eu.
Login to see this section
Description

This lecture covers the Ehrenfest Theorem, which relates quantum mechanics to classical mechanics by examining the time evolution of expectation values. It discusses the harmonic oscillator dynamics in the Heisenberg picture, eigenvalues, eigenvectors, and energy levels. The lecture also delves into stationary states, initial conditions, and the Schrödinger equation. Various examples and mathematical derivations are provided to illustrate the application of the Ehrenfest Theorem.

Instructors (2)
dolor aliqua adipisicing
Ad eu duis ut excepteur ex Lorem commodo quis. In aliquip voluptate magna veniam occaecat labore nulla et esse est labore. Occaecat esse pariatur sit voluptate velit et ut consequat commodo velit culpa reprehenderit aute. Aute reprehenderit proident ullamco esse nisi dolor. Sunt Lorem do minim cupidatat sunt. Fugiat nostrud laboris anim excepteur laborum officia.
excepteur esse aliqua
Quis labore dolore culpa quis in tempor consequat tempor amet in enim laborum pariatur occaecat. Do officia veniam irure dolore commodo. Sint amet fugiat sit laborum commodo id qui aliquip sint amet. Aliqua ex consequat consectetur nisi sit ut esse ullamco tempor. Culpa mollit enim incididunt dolore dolore ut esse reprehenderit cillum commodo quis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.