Lecture

Kernel Ridge Regression: Equivalent Formulations and Representer Theorem

In course
DEMO: cupidatat occaecat anim
Enim proident do commodo exercitation nostrud aliquip. Excepteur occaecat laboris exercitation minim minim voluptate fugiat sunt sint. Commodo id cupidatat commodo sint anim et nulla quis qui laborum tempor est incididunt. Adipisicing aliqua aliquip deserunt ad cupidatat do officia fugiat. Ullamco voluptate amet minim consectetur et duis duis in duis minim consequat.
Login to see this section
Description

This lecture covers Kernel Ridge Regression, presenting equivalent formulations for Ridge regression and the Representer Theorem. It explains the usefulness of alternative forms, the Kernel trick, and building new kernels from old ones. The lecture also delves into the Mercer's condition and predicting with kernels.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
minim laborum sunt
Anim aliquip elit culpa id. Mollit voluptate commodo amet consequat laboris nulla non. Dolore non culpa sit Lorem veniam nulla nisi magna id duis elit voluptate. Ipsum sint consequat labore velit cillum elit minim laborum cupidatat qui.
laborum nostrud non ipsum
Nulla in pariatur consectetur do aliquip exercitation. Lorem mollit cillum elit ullamco anim aute sunt labore pariatur commodo eu proident excepteur. Pariatur veniam veniam nostrud sunt eu adipisicing reprehenderit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.