Lecture

Stationarity in Stochastic Processes

In course
DEMO: deserunt amet labore quis
Aliqua nisi enim dolor ad quis aliqua ea. Ipsum irure deserunt deserunt eiusmod incididunt laboris dolore reprehenderit voluptate Lorem. Aute in irure duis deserunt sint nostrud anim nostrud consectetur commodo consequat nisi do. Reprehenderit qui excepteur ea id in tempor do aliqua ea ullamco commodo. Nulla incididunt occaecat irure sint qui elit culpa ea Lorem exercitation aute ipsum Lorem occaecat.
Login to see this section
Description

This lecture delves into the concept of stationarity in stochastic processes, exploring how the statistical characteristics of processes remain constant over time. The instructor explains the conditions for weak and strict stationarity, illustrating with examples how processes can exhibit different levels of stationarity. Through detailed calculations and explanations, the lecture covers the implications of stationarity on the correlation between random variables and the Fourier transform. The instructor demonstrates how to determine stationarity using characteristic functions and highlights the distinction between deterministic and random fluctuations over time. The lecture concludes by hinting at future topics, such as ergodicity and empirical averages.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructor
Lorem incididunt
Veniam dolore quis id aliqua dolor. Elit proident dolore nostrud dolor reprehenderit dolore ullamco sint tempor consequat tempor. Veniam ex labore ullamco sunt Lorem dolor mollit. Pariatur eiusmod deserunt ea qui nulla laborum ullamco qui id mollit laborum. Enim duis est irure nulla duis. Mollit dolor duis eu sunt cupidatat dolor minim. Eiusmod sunt amet id duis excepteur minim sunt minim consequat dolor qui consequat in.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.