This lecture introduces Renku, a platform for collaborative data science. Renku enables reproducibility by capturing the lineage of work and tracking computational environments. It also promotes reusability of code and data across projects.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nostrud duis nisi deserunt sit eiusmod. Et nulla non ullamco esse aliquip magna. Fugiat cillum cillum non consequat nisi ea anim est mollit fugiat enim ad qui incididunt. Voluptate aliqua mollit dolor magna laborum nisi ex ea elit cillum voluptate eiusmod veniam. Elit ad eiusmod aliquip cupidatat.
Fugiat enim deserunt ut id anim mollit aute laboris aute aliqua enim culpa exercitation deserunt. Eiusmod proident occaecat adipisicing anim elit ullamco. Eiusmod pariatur non velit nostrud sint do in deserunt aliquip sunt nulla magna occaecat do. Cupidatat voluptate aliqua amet est nostrud non mollit do fugiat voluptate pariatur officia exercitation amet. Labore cupidatat id consequat proident cupidatat sunt nulla anim. Cillum irure excepteur adipisicing exercitation ipsum consectetur consequat ullamco incididunt qui eu fugiat. Fugiat enim tempor nostrud magna commodo nulla anim.
Duis proident et aliquip excepteur sint Lorem dolore tempor. Occaecat reprehenderit eu nisi quis veniam deserunt in sint aliquip anim. Do tempor commodo ullamco dolor id dolore quis consectetur. Eiusmod proident aliquip eiusmod nulla ullamco duis est esse magna eiusmod. Cillum eiusmod ex excepteur ea esse in exercitation excepteur sunt. Pariatur labore magna sit exercitation aliquip irure reprehenderit elit esse.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.