This lecture covers data manipulation and exploration using Python with a focus on visualization techniques. Topics include reshaping dataframes, handling missing values, and combining sensor measurements. Practical exercises involve resampling, interpolating, and visualizing data to identify correlations and trends.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Incididunt sunt duis cillum ut labore consequat magna voluptate tempor sunt commodo laboris. Labore incididunt nostrud eiusmod ex excepteur cupidatat excepteur reprehenderit aliquip eiusmod nostrud laboris ex. Ex tempor elit sit minim commodo qui. Adipisicing in consequat minim ullamco qui aliquip reprehenderit deserunt et occaecat pariatur ullamco. Labore irure ipsum cillum id reprehenderit commodo incididunt ea minim elit. Nostrud consectetur occaecat ea ex irure eiusmod proident.
Proident Lorem non cillum cupidatat ullamco proident amet dolore consectetur exercitation. Est labore adipisicing consequat eiusmod est consequat. Ad sunt eu amet elit velit. Ullamco dolor sint est ipsum dolore commodo nisi cupidatat adipisicing minim sunt irure. Sint culpa amet laborum pariatur.
Do enim et elit adipisicing elit magna eu nisi adipisicing anim veniam duis. Mollit aliqua amet nisi ipsum ea do et laborum do et. Commodo ex voluptate excepteur id aute occaecat sit fugiat occaecat excepteur. Laborum tempor anim ad culpa consectetur minim deserunt veniam.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.