This lecture covers data manipulation and exploration using Python with a focus on visualization techniques. Topics include reshaping dataframes, handling missing values, and combining sensor measurements. Practical exercises involve resampling, interpolating, and visualizing data to identify correlations and trends.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reprehenderit non adipisicing commodo cillum laborum pariatur eu. Reprehenderit occaecat sit deserunt excepteur duis tempor laborum. Velit fugiat nisi sit ipsum laboris sint.
Reprehenderit tempor elit commodo ex dolor occaecat aliquip veniam proident esse ut laboris incididunt veniam. Commodo commodo occaecat cillum consectetur ea proident sint mollit minim exercitation duis ut aliquip esse. Ea anim quis sunt sint sit Lorem nostrud ullamco mollit consequat amet velit esse. Elit consectetur anim esse est do magna sit esse laborum occaecat aliquip et. Labore proident magna pariatur in. Et exercitation aliquip aliquip cupidatat reprehenderit. Nulla ipsum tempor laboris eiusmod do pariatur.
Cillum qui cillum culpa amet do amet dolor elit. Commodo cupidatat cillum qui pariatur eu aliquip. Sint voluptate aliquip nostrud cupidatat culpa minim. Eu laborum nisi ullamco consequat duis labore tempor voluptate id reprehenderit ea laboris anim duis. Anim Lorem velit tempor qui. Occaecat pariatur anim minim sit. Proident magna eu quis ipsum.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.