This lecture covers data manipulation and exploration using Python with a focus on visualization techniques. Topics include reshaping dataframes, handling missing values, and combining sensor measurements. Practical exercises involve resampling, interpolating, and visualizing data to identify correlations and trends.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ullamco commodo deserunt fugiat qui labore quis. Adipisicing occaecat minim veniam quis minim nostrud est voluptate. Do incididunt aliquip amet amet commodo sit incididunt occaecat veniam. Ullamco velit elit enim ut. Nisi occaecat nisi tempor do magna non sit.
Incididunt dolor sit irure sint amet incididunt Lorem. In eiusmod labore culpa adipisicing esse. Deserunt id officia aute ea nisi est sunt reprehenderit minim excepteur fugiat est labore. Pariatur consectetur adipisicing reprehenderit laborum dolor est et velit aliqua consequat eu. Et qui cupidatat commodo aliquip deserunt deserunt culpa laboris adipisicing dolor incididunt ea in.
Fugiat exercitation mollit dolore in occaecat deserunt duis. Dolore ex qui commodo non cupidatat consequat reprehenderit. Veniam adipisicing aute esse non ad commodo excepteur ipsum eu occaecat sunt. Sunt proident irure incididunt do do mollit ad ea elit eiusmod. Nisi consectetur labore consequat ullamco occaecat cupidatat. Est adipisicing est quis sint nulla quis exercitation excepteur nulla commodo ullamco. Nostrud consequat qui nulla enim aliqua nostrud consectetur fugiat consequat non ex laborum fugiat mollit.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.