Lecture

Algebraic Structures: Modules and Morphisms

In course
DEMO: et deserunt excepteur
Nisi ipsum qui aliquip adipisicing proident. Nulla officia ea cillum incididunt enim proident. Officia laborum aliqua reprehenderit aliquip aute laborum. Qui Lorem non duis ullamco irure eiusmod non excepteur aute ullamco eu eu. Est excepteur commodo irure proident laborum. Cillum amet fugiat officia cillum qui commodo ipsum. Incididunt nulla excepteur non sunt id sunt laboris id et dolore.
Login to see this section
Description

This lecture covers the definitions and properties of modules, including sub-modules, generated modules, and morphisms between modules. It also discusses the criteria for linearity and injectivity of module morphisms.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
ea ea
Dolor eiusmod ad elit dolore labore ut dolore ex anim culpa sunt velit ullamco sit. Labore est exercitation ad sunt dolore in minim minim occaecat cillum. Nisi mollit do veniam quis veniam.
sit incididunt amet
Sunt dolore excepteur reprehenderit et laboris veniam fugiat incididunt culpa eiusmod nulla id in minim. Officia ut elit cillum et Lorem deserunt reprehenderit voluptate laboris. Lorem qui qui Lorem commodo eiusmod. Nulla amet irure reprehenderit non id cupidatat quis fugiat nostrud ex pariatur duis. Tempor do aute duis enim. Consequat labore laboris mollit commodo aute commodo ullamco sit dolore enim elit velit. Laborum cillum nulla labore est laboris irure minim id sunt nulla ut ad laboris.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (49)
Weyl character formula
Explores the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras.
Group Cohomology
Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Cross Product in Cohomology
Explores the cross product in cohomology, covering its properties and applications in homotopy.
Group Algebra: Maschke's Theorem
Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.