Lecture

Algebraic Structures: Modules and Morphisms

In course
DEMO: qui cillum mollit laboris
Eu laborum labore cillum anim sit qui occaecat velit ullamco Lorem sint exercitation. Elit Lorem irure commodo nostrud mollit ad ipsum dolore nostrud ipsum aute. Elit magna ullamco aliqua sunt eu enim consequat deserunt nostrud. Irure adipisicing aliqua laboris do est labore anim sit. Ex ex ut est ex. Magna in proident consectetur commodo adipisicing aliquip dolore amet nulla. Sunt sunt Lorem elit consectetur fugiat nulla amet.
Login to see this section
Description

This lecture covers the definitions and properties of modules, including sub-modules, generated modules, and morphisms between modules. It also discusses the criteria for linearity and injectivity of module morphisms.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
incididunt irure irure nisi
Laboris ut dolore occaecat Lorem ullamco veniam do consequat elit occaecat adipisicing ipsum esse aliqua. Reprehenderit dolore ea proident cupidatat eiusmod velit ea laborum laborum fugiat adipisicing magna. Ad esse laborum incididunt commodo eu occaecat magna voluptate qui excepteur pariatur velit. Ad velit elit elit sunt eu exercitation proident Lorem eu ex tempor culpa.
quis commodo
Fugiat fugiat pariatur id mollit nisi non minim tempor nostrud tempor. Eiusmod do pariatur magna ullamco proident dolore consectetur ea minim nostrud. Elit aliquip nostrud nisi et sint fugiat duis dolore exercitation excepteur. In pariatur irure dolore ipsum do eiusmod minim pariatur labore eu occaecat. Ad incididunt Lorem id occaecat minim ipsum ipsum nulla. Laboris ad veniam sit culpa fugiat ex et ad consectetur nulla ea. Sunt eu nisi culpa Lorem aliqua amet incididunt aliquip proident excepteur duis ea occaecat enim.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (49)
Weyl character formula
Explores the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras.
Group Cohomology
Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Cross Product in Cohomology
Explores the cross product in cohomology, covering its properties and applications in homotopy.
Group Algebra: Maschke's Theorem
Explores Wedderburn's theorem, group algebras, and Maschke's theorem in the context of finite dimensional simple algebras and their endomorphisms.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.