Lecture

Numerical Integration: Composite Formulas

In course
DEMO: laborum et do consequat
Sunt enim sit dolor cupidatat Lorem eu tempor irure aute tempor consectetur do incididunt reprehenderit. Excepteur sunt cillum proident reprehenderit adipisicing reprehenderit reprehenderit laborum incididunt eiusmod esse eiusmod. Ea consequat id amet duis commodo elit quis veniam mollit veniam labore fugiat quis eu. Est ea elit officia fugiat est nisi do. Lorem cillum tempor do do quis aliquip exercitation ullamco ut non tempor pariatur veniam duis. Duis excepteur proident deserunt ipsum amet sunt nisi. Eu proident do in id.
Login to see this section
Description

This lecture covers the concept of numerical integration, focusing on composite formulas like the midpoint and trapezoidal rules. It explains the order of integration formulas based on error, accuracy degree, and estimation methods. The instructor demonstrates the accuracy of integration methods using polynomial examples and provides insights into the composite formulas' precision. The lecture also delves into the calculation of integrals using various composite methods and discusses the accuracy of the Simpson formula. Additionally, it includes exercises on determining the exact values of integrals and evaluating errors in the integration process.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
ex eu pariatur
Adipisicing cupidatat cupidatat sit aliqua ut magna officia nostrud aute sit elit ex. Dolor in adipisicing exercitation duis cillum anim deserunt. Lorem voluptate eu eu consequat in nostrud ex officia est Lorem voluptate laborum culpa in.
consectetur commodo
Officia elit nisi tempor non. Labore nisi Lorem eiusmod sunt excepteur. Do qui ullamco sunt sint labore adipisicing consequat sint consectetur. Ipsum esse fugiat eu laboris aliquip nostrud ipsum. Aliquip occaecat aute cupidatat occaecat ea ipsum occaecat culpa incididunt dolor veniam officia ipsum.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (61)
Numerical integration: continued
Covers numerical integration methods, focusing on trapezoidal rules, degree of exactness, and error analysis.
Gauss-Legendre Quadrature Formulas
Explores Gauss-Legendre quadrature formulas using Legendre polynomials for accurate function approximation.
Topology of Riemann Surfaces
Covers the topology of Riemann surfaces, focusing on orientation and orientability.
Differential Forms Integration
Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.
Interpolatory Quadrature Formulas
Covers interpolatory quadrature formulas for approximating definite integrals using polynomials and discusses the uniqueness of solutions and practical applications in numerical integration.
Show more