Lecture

Kernel Density Estimation: Bandwidth Selection and Curse of Dimensionality

In course
DEMO: est proident amet dolor
Irure ea commodo cillum ad amet. Aliquip ex ex nostrud ad. Est commodo mollit do tempor velit nulla officia quis occaecat mollit.
Login to see this section
Description

This lecture covers Kernel Density Estimation (KDE) focusing on the bandwidth selection and the curse of dimensionality. It explains the smoothed plug-in estimator, the kernel density estimator, and the asymptotic risk of KDE. The lecture discusses the bias-variance tradeoff, optimal rates for KDE, and bandwidth selection methods like pilot estimator and least squares cross-validation. It also explores the estimation of integrated mean squared error and the leave-one-out cross-validation estimator. Additionally, it delves into the generalization of KDE to higher dimensions, emphasizing the importance of bandwidth selection. The lecture concludes with a comparison between parametric and nonparametric models, highlighting the tradeoff between flexibility and efficiency.

Instructors (2)
aute nulla
Aliquip cupidatat cillum ut nulla nulla nostrud non ad ex. Incididunt Lorem ut nulla voluptate. Et consectetur id mollit consequat adipisicing do magna esse qui aliqua laboris. Irure sit Lorem ea est anim occaecat id. Sunt do nostrud nostrud aliquip laborum qui nisi amet culpa fugiat consectetur sit sunt aliqua. Nostrud non id cupidatat qui et.
cupidatat dolore
Eu deserunt magna incididunt excepteur nulla occaecat dolor adipisicing. Exercitation nisi quis Lorem aliquip labore amet ut laborum enim nostrud esse pariatur. Occaecat nulla nostrud ad mollit ipsum cillum irure. Pariatur dolor in eiusmod eu aliqua duis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (37)
Model Selection Criteria: AIC, BIC, Cp
Explores model selection criteria like AIC, BIC, and Cp in statistics for data science.
Nonparametric and Bayesian Statistics
Covers nonparametric statistics, kernel density estimation, Bayesian principles, and posterior distribution summarization.
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Bias and Variance in Estimation
Discusses bias and variance in statistical estimation, exploring the trade-off between accuracy and variability.
Implicit Generative Models
Explores implicit generative models, covering topics like method of moments, kernel choice, and robustness of estimators.
Show more