Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This lecture covers the convergence analysis of stochastic gradient algorithms for smooth risks under various operational modes, including updates with constant and vanishing step-sizes, data sampling with and without replacement, and mini-batch gradient approximations. The lecture delves into the conditions on risk and loss functions, the convergence behavior in mean-square-error sense, and the impact of step-size sequences on the convergence rate. The instructor discusses the convergence properties under different step-size sequences and provides theorems and examples to illustrate the rates of convergence.