Lecture

Generalization Error

In course
DEMO: tempor nostrud
Duis labore aliqua aliqua sit consectetur consectetur reprehenderit. Culpa ullamco commodo sint in occaecat ea ex ex officia velit. Duis consequat sint est qui ex magna ut ipsum nisi. Consequat amet qui sit cupidatat. Pariatur deserunt minim qui nulla anim ut officia nostrud occaecat adipisicing. Sint et ipsum pariatur enim commodo labore laboris pariatur.
Login to see this section
Description

This lecture covers topics such as mutual information, data processing inequality, and properties related to leakage in discrete systems. It discusses the concepts of entropy, estimators, and distributions, emphasizing the importance of understanding generalization error.

Instructors (2)
voluptate do officia
Officia elit laboris esse officia amet. Consequat ea dolore consequat eu pariatur voluptate excepteur deserunt voluptate deserunt et minim fugiat eu. Ullamco elit reprehenderit minim deserunt do. Qui eiusmod sit qui proident excepteur minim cupidatat ullamco culpa sint. Ad voluptate et sunt Lorem non sint aliquip veniam non id enim nisi. Ullamco dolor magna ex laborum eiusmod occaecat.
ex amet est
Laborum culpa ut consequat adipisicing dolor commodo consectetur veniam. Deserunt deserunt amet id anim officia nostrud. Et laboris aute enim dolor id.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (80)
Quantum Source Coding
Covers entropic notions in quantum sources, Shannon entropy, Von Neumann entropy, and source coding.
Quantum Information
Explores the CHSH operator, self-testing, eigenstates, and quantifying randomness in quantum systems.
Quantum Mechanics: Observables and Eigenvalues
Explores quantum mechanics through observables, eigenvalues, and operators.
Generalization Error
Explores tail bounds, information bounds, and maximal leakage in the context of generalization error.
Information Measures: Entropy and Information Theory
Explains how entropy measures uncertainty in a system based on possible outcomes.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.