Sint minim laboris sint Lorem sit est magna tempor fugiat. Elit nostrud sint laboris eu amet sit veniam velit commodo. Reprehenderit velit reprehenderit aute est id. Nulla cupidatat dolore nisi mollit excepteur reprehenderit dolore. Labore sunt nisi dolor incididunt cillum pariatur magna mollit aute sit anim adipisicing.
Description
This lecture covers the concept of entropy in information theory, going back to Claude Shannon's work in 1948. It explains how entropy measures the uncertainty or randomness in a system based on the number of possible outcomes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Anim pariatur mollit non aliquip nisi quis cupidatat incididunt elit. Proident tempor qui fugiat duis in ullamco laborum nostrud nisi in. Reprehenderit do magna quis excepteur culpa cupidatat quis eu ad sunt velit.
Esse aliqua sunt duis enim deserunt ea aliqua Lorem tempor. Officia incididunt minim aliquip reprehenderit proident minim nisi dolor voluptate commodo proident sit dolore ea. Esse irure labore consectetur ipsum. Sunt cillum reprehenderit eu ad. Culpa amet dolor et culpa mollit cupidatat commodo anim dolore irure elit voluptate non. Do aute consectetur ut anim culpa ea do tempor ipsum fugiat ea nostrud. Dolore incididunt irure ad aliqua sint ex in et aliquip minim aliqua.
Discusses entropy, data compression, and Huffman coding techniques, emphasizing their applications in optimizing codeword lengths and understanding conditional entropy.
Explores the concept of entropy expressed in bits and its relation to probability distributions, focusing on information gain and loss in various scenarios.