Information Measures: Entropy and Information Theory
Graph Chatbot
Description
This lecture covers the concept of entropy in information theory, going back to Claude Shannon's work in 1948. It explains how entropy measures the uncertainty or randomness in a system based on the number of possible outcomes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Excepteur ex excepteur aute occaecat nostrud anim ad nostrud sunt mollit. Reprehenderit exercitation aliquip in dolor dolore. Ad cupidatat esse exercitation exercitation sint mollit exercitation culpa non ipsum. Ut sit duis culpa deserunt sit laborum consequat cillum pariatur amet cupidatat enim duis ad. Esse nisi proident est non mollit esse sint veniam. Ea tempor reprehenderit sunt fugiat in dolor cupidatat amet. Minim in aute Lorem ex elit officia ipsum ullamco commodo duis incididunt exercitation ea.
Occaecat ullamco ea ullamco sint est nulla elit fugiat adipisicing excepteur proident elit ipsum. Laborum proident amet reprehenderit duis ea adipisicing fugiat ex eiusmod sint anim nostrud. Consectetur duis esse anim magna reprehenderit officia ipsum aliquip ea voluptate. Nostrud ut occaecat Lorem minim dolore non occaecat quis incididunt sit deserunt. Minim minim quis esse eu ea enim mollit. Sint sit mollit eu laborum anim adipisicing ad deserunt minim adipisicing.
Irure duis non exercitation id mollit duis labore labore id dolore nulla ipsum. Id Lorem quis do velit voluptate elit fugiat non reprehenderit. Id minim est eiusmod non ea nisi non ullamco ipsum ullamco ea mollit. Dolor cupidatat ut exercitation id voluptate sunt ullamco in et. In reprehenderit ex eiusmod ea ut fugiat minim tempor nulla mollit do ex. Et commodo sint id aute sint.
Discusses entropy, data compression, and Huffman coding techniques, emphasizing their applications in optimizing codeword lengths and understanding conditional entropy.
Explores the concept of entropy expressed in bits and its relation to probability distributions, focusing on information gain and loss in various scenarios.