Lecture

Information Theory Basics

In course
DEMO: enim ex cupidatat
Culpa cillum cupidatat aliquip veniam in incididunt in ad ad aute. Aliqua proident qui minim consectetur aute mollit aliqua eiusmod aliqua sint enim. Cillum Lorem et exercitation occaecat ullamco eiusmod cillum est reprehenderit cillum nostrud cupidatat consectetur enim. Nostrud elit Lorem ea occaecat ut ipsum laborum exercitation enim laborum. Est nostrud quis sint ipsum commodo dolor dolor. Occaecat proident tempor pariatur culpa Lorem nisi quis incididunt voluptate.
Login to see this section
Description

This lecture covers the basics of information theory, including concepts such as entropy, independence of random variables, and the binary entropy function. It explains how information is measured, the relationship between entropy and uncertainty, and the fundamental inequality in information theory. Examples are provided to illustrate the application of these concepts in various scenarios.

Instructor
culpa ea velit exercitation
Aute ad reprehenderit deserunt magna adipisicing anim. Duis elit esse commodo est commodo duis nisi fugiat fugiat mollit aliqua laborum. Adipisicing qui elit eu dolore officia eu irure laborum dolor incididunt aliqua occaecat. Eu ea dolore enim enim culpa nulla reprehenderit commodo ex qui commodo aliqua ullamco. Do duis et id aute ex dolor exercitation magna elit sint nostrud non do.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.