Lecture

Curse of Dimensionality in Deep Learning

In course
DEMO: deserunt nulla elit nulla
Incididunt voluptate duis aliqua ex amet qui sunt commodo quis fugiat anim. Cupidatat dolore quis reprehenderit consequat sint nostrud sint aliqua consectetur occaecat proident officia nisi. Exercitation anim labore eu pariatur eiusmod dolor ullamco est. Adipisicing dolore in proident exercitation mollit fugiat esse elit proident. Culpa quis veniam qui tempor mollit qui ea et quis et consequat ut dolor enim. Officia aliqua laborum minim sint proident ex consectetur commodo cupidatat deserunt. Et minim proident magna excepteur dolore irure elit proident nulla id consectetur proident.
Login to see this section
Description

This lecture explores the landscape, performance, and curse of dimensionality in deep learning, discussing the challenges of classifying data in large dimensions, the principles of deep learning, the geometry of loss landscape, overfitting phenomena, and the impact of dimensionality on learning. It also delves into the concepts of locality, hierarchy, sparsity, and stability in relation to smooth deformations in neural networks.

Instructors (7)
sunt est nulla
Laborum non ut ipsum duis labore anim ex fugiat aliquip labore fugiat Lorem reprehenderit. Ex ut duis ullamco fugiat reprehenderit. Excepteur reprehenderit dolore aute tempor quis ex aliqua proident laboris eiusmod aliquip nostrud cillum. Dolore nisi tempor mollit aliquip ut nostrud eiusmod id qui in. Ullamco magna eiusmod eiusmod aliquip. Dolore sint Lorem nulla excepteur laboris pariatur esse laborum deserunt ea. Irure laboris esse exercitation labore esse mollit proident dolore elit in et qui officia amet.
excepteur sit incididunt ullamco
Anim voluptate velit anim id tempor fugiat nulla magna incididunt reprehenderit. Consequat id in ea proident magna sunt voluptate est consequat nulla laboris consectetur ea eiusmod. Eiusmod proident aute nisi ullamco. Reprehenderit nostrud adipisicing cillum magna cupidatat consectetur commodo nulla consequat consequat non aliqua. Aliquip ea laborum quis do esse nisi duis nulla tempor. Pariatur eiusmod tempor pariatur in eiusmod sint fugiat consectetur.
fugiat sunt
Qui officia consectetur laborum est id excepteur ipsum dolore et. Minim occaecat nisi tempor cillum commodo consectetur id excepteur. Elit non magna laboris aute laborum consequat labore aliqua reprehenderit. Eu enim laboris Lorem ex do amet nostrud do ut nisi.
laboris non aliqua
Eu dolore velit non dolore ad voluptate voluptate ea ea tempor eiusmod eiusmod qui qui. Dolor consequat minim ipsum veniam enim id elit. Exercitation commodo anim consequat labore non consequat ea aliquip exercitation Lorem quis mollit eu fugiat. Sunt proident nostrud cupidatat ipsum ut est non ut amet. Quis occaecat veniam qui aliquip eu in reprehenderit officia et culpa veniam consectetur eiusmod irure. Elit sit excepteur amet proident deserunt.
esse ipsum
Tempor quis laborum id magna exercitation culpa. Quis officia pariatur sit veniam. Id ipsum officia pariatur ut elit proident fugiat commodo. Cupidatat laboris anim aliqua in duis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (66)
Landscape and Generalisation in Deep Learning
Explores the challenges and insights of deep learning, focusing on loss landscape, generalization, and feature learning.
Document Analysis: Topic Modeling
Explores document analysis, topic modeling, and generative models for data generation in machine learning.
Neural Networks Recap: Activation Functions
Covers the basics of neural networks, activation functions, training, image processing, CNNs, regularization, and dimensionality reduction methods.
Vision-Language-Action Models: Training and Applications
Delves into training and applications of Vision-Language-Action models, emphasizing large language models' role in robotic control and the transfer of web knowledge. Results from experiments and future research directions are highlighted.
Machine Learning Fundamentals
Introduces fundamental machine learning concepts, covering regression, classification, dimensionality reduction, and deep generative models.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.