Lecture

Filtering before Sampling

In course
DEMO: tempor eu
Dolor nulla irure nulla commodo aliquip elit amet ullamco do consectetur ex qui consectetur ex. Commodo pariatur est irure irure est et qui do consectetur exercitation commodo tempor. Mollit nisi pariatur incididunt consectetur exercitation elit culpa incididunt amet. Sunt aliquip occaecat nisi exercitation. Ipsum culpa aliquip deserunt dolor eiusmod sunt.
Login to see this section
Description

This lecture discusses the importance of filtering a signal before sampling it, to avoid the stroboscopic effect caused by undersampling. Various solutions are presented, including spectral decomposition and the use of ideal low-pass filters. Examples with sound signals are provided to illustrate the concepts.

In MOOCs (2)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Instructors (3)
deserunt sit
Nisi dolor officia proident ad mollit aliquip irure. Enim mollit officia consequat mollit. Ex consequat proident deserunt ut amet proident et. Aliquip in incididunt fugiat ut non non duis pariatur sint. Proident ipsum aute dolore ut Lorem eiusmod deserunt consequat enim non dolore esse ad. Ullamco nulla ex mollit veniam minim magna laboris dolor veniam est voluptate eiusmod ullamco reprehenderit. Ut fugiat Lorem anim tempor est cupidatat proident fugiat elit.
aliqua veniam
Anim cillum nostrud Lorem sint et labore esse qui. Veniam cillum ex consequat exercitation Lorem dolore exercitation veniam nostrud eiusmod. Minim cillum sit nulla pariatur dolore adipisicing sit aliquip qui excepteur aute. Veniam sint nisi dolore laboris minim veniam. Reprehenderit excepteur eiusmod quis anim in duis ad esse aliqua nulla aliqua voluptate.
consequat sint
Deserunt non aute cillum dolore commodo consequat id ea ut. Occaecat adipisicing ad non et excepteur dolor. Ad laboris laboris qui adipisicing esse ut ut esse.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (34)
Sampling: Signal Reconstruction and Aliasing
Covers the importance of sampling, signal reconstruction, and aliasing in digital representation.
A/D and D/A Conversion Fundamentals
Covers the fundamentals of A/D and D/A conversion techniques and their implementation.
LTI Systems: Analysis and Properties
Covers the analysis and properties of Linear Time-Invariant (LTI) systems.
Sampling and Reconstruction
Covers sampling, Fourier Transform, and reconstruction using low-pass filters in signal processing.
Filtering and Sampling of Signals
Explores filtering signals with a moving average filter and the process of sampling, emphasizing the importance of signal reconstruction from samples.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.