Lecture

Dirichlet-Multinomial Model

In course
DEMO: cupidatat ex laboris non
Adipisicing laboris aliqua labore irure ullamco enim anim eiusmod aliqua ipsum. Eu veniam sint deserunt dolor pariatur pariatur laboris qui veniam consequat. Sint culpa pariatur nostrud sint ea ipsum excepteur quis in minim cillum aliqua in. Dolor aliquip elit excepteur irure amet commodo voluptate pariatur excepteur exercitation irure eu. Nostrud nulla quis amet pariatur ut minim irure eu aliquip. Fugiat sit reprehenderit sit ex ut non adipisicing. Nulla in proident elit veniam officia reprehenderit.
Login to see this section
Description

This lecture covers consecutive updates of the posterior, the Dirichlet distribution on the simplex, Bayesian inference in the multinomial model with a Dirichlet prior, posterior mean and variance in the Dirichlet-Multinomial model, conjugate priors, and posterior expectations. It also discusses the predictive distribution and Bayesian estimation of a multinomial random variable.

Instructor
laborum eiusmod
Nulla ipsum sit sit laboris adipisicing et deserunt dolore duis nisi. Sunt tempor nulla labore consequat voluptate Lorem sint pariatur. Aute ut magna amet esse ut ad incididunt qui aliquip est dolor nisi. Laboris sunt anim duis irure eu magna ea nisi culpa velit elit mollit cillum. Irure mollit consectetur qui est amet veniam et anim nostrud nulla magna qui pariatur tempor.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (44)
Bayesian Inference: Gaussian Variables
Explores Bayesian inference for Gaussian random variables, covering joint distribution, marginal pdfs, and the Bayes classifier.
Probability and Statistics
Covers p-quantile, normal approximation, joint distributions, and exponential families in probability and statistics.
Fundamental Limits of Gradient-Based Learning
Delves into the fundamental limits of gradient-based learning on neural networks, covering topics such as binomial theorem, exponential series, and moment-generating functions.
Topic Models: Understanding Latent Structures
Explores topic models, Gaussian mixture models, Latent Dirichlet Allocation, and variational inference in understanding latent structures within data.
Words, tokens, n-grams and Language Models
Explores words, tokens, n-grams, and language models, focusing on probabilistic approaches for language identification and spelling error correction.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.