Lecture

Optimal Transport: Prokhorov Theorem

In course
DEMO: anim dolor consequat
Lorem elit in esse laborum incididunt. Ut elit culpa Lorem quis commodo. Non mollit eiusmod non laborum tempor nisi officia fugiat velit. Aliquip elit dolore tempor ipsum mollit dolore est duis. Irure commodo minim pariatur cillum excepteur consequat commodo aute enim velit Lorem incididunt veniam. Occaecat anim laboris aliquip fugiat magna est ipsum ullamco ullamco laborum occaecat reprehenderit laborum. Non ad cillum aliquip aliqua ea minim cillum labore excepteur dolor.
Login to see this section
Description

This lecture covers the Prokhorov Theorem in the context of Optimal Transport, discussing the concept of relatively compact sets, tightness, and narrow convergence. The instructor explains the conditions for c-cyclical monotonicity and provides a heuristic approach for optimality. The lecture emphasizes the importance of support sets and rigorous definitions in proving optimality conditions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.