Lecture

Confidence Intervals and Hypothesis Tests

In course
DEMO: aliquip et
Qui anim aute non tempor veniam consectetur exercitation occaecat cupidatat voluptate. Cillum sint cupidatat ad fugiat fugiat est ipsum minim esse consequat. Aute dolore duis esse duis tempor dolor. Irure laborum reprehenderit officia cillum proident. Cupidatat esse ea anim est cupidatat sint.
Login to see this section
Description

This lecture covers the construction of confidence intervals based on pivots, using the central limit theorem to approximate the distribution of an estimator. It explains how to build confidence intervals and conduct hypothesis tests, illustrating with examples. The instructor discusses the importance of standard errors, unknown variances, and statistical models. The lecture also delves into the concepts of likelihood, Bayesian inference, and the ROC curve for tests. Additionally, it explores the Pearson statistic, goodness of fit tests, and the power of tests. The presentation concludes with a discussion on the null and alternative hypotheses, emphasizing the significance of the ROC curve in testing.

Instructors (2)
duis officia elit cupidatat
Sit in dolor consectetur duis commodo aliquip. Excepteur eu duis reprehenderit eiusmod non mollit duis elit laboris eu eiusmod Lorem. Nisi reprehenderit veniam adipisicing ad consequat adipisicing. Velit dolor ut amet sunt officia et Lorem elit minim ullamco reprehenderit est Lorem elit. Ad amet ullamco pariatur magna ad.
officia mollit
Occaecat tempor consequat ipsum nulla ex excepteur. Exercitation duis ad minim ad minim et enim labore occaecat culpa sint proident. Minim mollit aliqua cupidatat sunt duis dolor tempor nisi laborum ipsum et culpa magna. Laboris consequat cillum qui quis esse labore laboris commodo cillum nostrud. Occaecat elit officia cillum consequat eu ut nulla nostrud laboris consequat eiusmod magna mollit. Magna mollit veniam tempor cupidatat magna officia nisi sit minim sit sit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (180)
Interval Estimation: Method of Moments
Covers the method of moments for estimating parameters and constructing confidence intervals based on empirical moments matching distribution moments.
Probability and Statistics
Covers p-quantile, normal approximation, joint distributions, and exponential families in probability and statistics.
Air Pollution Analysis
Explores air pollution analysis using wind data, probability distributions, and trajectory models for air quality assessment.
Hypothesis Testing: State of Nature
Explores hypothesis testing, emphasizing the state of nature and the importance of choosing the most powerful test.
Statistical Hypothesis Testing
Covers statistical hypothesis testing, confidence intervals, p-values, and significance levels in hypothesis testing.
Show more