Lecture

Fast Fourier Transform: Basics and Applications

Description

This lecture covers the basics of the Fast Fourier Transform (FFT) algorithm, which is used to efficiently calculate the Discrete Fourier Transform (DFT). Starting with the definition of FFT and its significance in signal processing, the instructor explains the process of dividing a signal into two sequences and recursively applying FFT. The lecture also delves into the steps involved in FFT, illustrating with an example of order N=8. Furthermore, the complexity of correlation and convolution of signals of length N is discussed, highlighting the advantages of FFT over direct calculation methods.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.