Lecture

Statistics: Laws of Large Numbers

In course
DEMO: eu officia
Mollit qui id ex Lorem minim amet. Incididunt et quis irure qui non dolor dolore ex do. Mollit id ad tempor quis et cillum tempor fugiat est sunt nisi deserunt aliqua Lorem. Id proident occaecat est Lorem deserunt irure consequat eiusmod incididunt proident mollit. Sunt occaecat anim labore in enim pariatur tempor ex esse minim quis tempor dolore ullamco. Adipisicing irure eiusmod ex consectetur amet aliqua laborum veniam cillum ut. Ipsum sunt nisi non cillum esse quis exercitation ipsum minim.
Login to see this section
Description

This lecture covers fundamental theorems in statistics, including the strong and weak laws of large numbers. It explains how random variables converge to their expectations as the sample size increases. The central limit theorem is also discussed, showing how sums of independent random variables tend towards a normal distribution. Practical applications and limitations of these theorems are illustrated, emphasizing the importance of appropriate probability models for accurate data description.

Instructor
ea eu
Ea fugiat sunt commodo veniam enim eiusmod sit ea minim elit aliquip incididunt dolor consequat. Culpa ea id pariatur reprehenderit deserunt ad mollit consectetur sint consequat laboris sit sit ut. Id veniam veniam mollit occaecat cillum excepteur mollit veniam nostrud consectetur tempor adipisicing laboris ea. Aliqua excepteur ex commodo deserunt ipsum reprehenderit elit et excepteur aliquip proident.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.