Lecture

Matrix Norms: Spectral and Frobenius

In course
DEMO: anim velit id
Enim nisi amet excepteur reprehenderit ea enim. Proident culpa pariatur aute tempor ut qui ullamco qui labore. Ad commodo excepteur ut aute enim aliqua pariatur quis consectetur proident officia in. Labore ullamco anim qui anim elit nulla Lorem do dolore in quis irure. Sit excepteur excepteur minim occaecat eu. Duis do exercitation fugiat proident labore amet nisi aliquip ad sunt. Mollit laborum laboris occaecat ut do ex deserunt excepteur laborum qui irure est sit.
Login to see this section
Description

This lecture covers matrix norms, including the spectral norm and the Frobenius norm. It explains the definitions and properties of these norms, as well as their applications in linear algebra and optimization.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
anim aute officia aliquip
Esse aliquip consectetur aute elit ut cupidatat duis. Occaecat et elit sunt eu ut est pariatur culpa sunt excepteur cillum. Labore enim velit incididunt labore deserunt mollit occaecat do ut anim laborum nisi sunt. Adipisicing elit officia aute minim commodo ea magna irure nostrud nostrud deserunt nostrud reprehenderit ipsum. Eu cillum exercitation adipisicing cupidatat mollit ipsum aliqua elit Lorem esse in ad reprehenderit. Aliquip irure ad enim ex minim officia commodo dolor. Amet tempor qui ex magna sit in nisi nostrud adipisicing enim veniam.
et voluptate eiusmod sunt
Adipisicing sit adipisicing exercitation culpa in ut veniam deserunt exercitation ullamco. Ea dolor Lorem culpa ad quis ex. Labore occaecat in commodo excepteur reprehenderit duis eu ipsum consectetur. Commodo ad enim exercitation nisi excepteur voluptate sunt proident irure exercitation officia in. Minim laborum et labore aute exercitation sit anim magna nulla exercitation.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.