MOOC

Warm-up for EPFL

Description

Il est sensé vous aider à vous rappeler certaines notions qui seront utiles dans les premières semaine à l'EPFL. Ce n'est pas un cours avec les prérequis. Vous pouvez faire ce MOOC dans les deux semaine avant le semestre, comme un échauffement avant un match.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Instructor
Lectures in this MOOC (23)
History of MechanicsMOOC: Warm-up for EPFL
Covers the history and methodology of mechanics from Aristotle to Newton.
Methodology of MechanicsMOOC: Warm-up for EPFL
Explores the methodology of mechanics, including modeling, laws application, problem-solving, theory limitations, and the historical evolution of classical mechanics.
Dimensional Analysis: Gravitational ConstantMOOC: Warm-up for EPFL
Corrects exercise 3 on dimensional analysis using the gravitational constant as an example.
Derivatives of FunctionsMOOC: Warm-up for EPFL
Introduces derivatives, composition of functions, Taylor expansion, velocity, acceleration, and temporal derivative notation in physics.
Derivative of a Function CompositionMOOC: Warm-up for EPFL
Covers the derivative of a composition of functions with examples from physics.
Show more
Related concepts (125)
Fluid–structure interaction
Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Fluid–structure interactions can be stable or oscillatory. In oscillatory interactions, the strain induced in the solid structure causes it to move such that the source of strain is reduced, and the structure returns to its former state only for the process to repeat. Fluid–structure interactions are a crucial consideration in the design of many engineering systems, e.g.
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Finite element method
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
Show more
Related courses (155)
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Show more
Related publications (1,000)

SPACE-TIME REDUCED BASIS METHODS FOR PARAMETRIZED UNSTEADY STOKES EQUATIONS

Simone Deparis, Riccardo Tenderini, Nicholas Mueller

In this work, we analyze space-time reduced basis methods for the efficient numerical simulation of haemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite difference sc ...
Philadelphia2024

Anomalous dissipation and other non-smooth phenomena in fluids

Massimo Sorella

The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...
EPFL2024

Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks

Alfio Quarteroni, Francesco Regazzoni, Stefano Pagani

Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equ ...
Nature Portfolio2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.