Mechanics (from Ancient Greek: μηχανική, mēkhanikḗ, "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements or changes of an object's position relative to its environment.
Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, Huygens, and Newton laid the foundation for what is now known as classical mechanics.
As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum realm.
History of classical mechanics and History of quantum mechanics
Aristotelian mechanics
The ancient Greek philosophers were among the first to propose that abstract principles govern nature. The main theory of mechanics in antiquity was Aristotelian mechanics, though an alternative theory is exposed in the pseudo-Aristotelian Mechanical Problems, often attributed to one of his successors.
There is another tradition that goes back to the ancient Greeks where mathematics is used more extensively to analyze bodies statically or dynamically, an approach that may have been stimulated by prior work of the Pythagorean Archytas. Examples of this tradition include pseudo-Euclid (On the Balance), Archimedes (On the Equilibrium of Planes, On Floating Bodies), Hero (Mechanica), and Pappus (Collection, Book VIII).
Theory of impetus
In the Middle Ages, Aristotle's theories were criticized and modified by a number of figures, beginning with John Philoponus in the 6th century. A central problem was that of projectile motion, which was discussed by Hipparchus and Philoponus.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In physics, a body force is a force that acts throughout the volume of a body. Forces due to gravity, electric fields and magnetic fields are examples of body forces. Body forces contrast with contact forces or surface forces which are exerted to the surface of an object. Normal forces and shear forces between objects are surface forces as they are exerted to the surface of an object. All cohesive surface attraction and contact forces between objects are also considered as surface forces.
Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948. For a given field and diffusion coefficient (or kinematic viscosity, as in the original fluid mechanical context) , the general form of Burgers' equation (also known as viscous Burgers' equation) in one space dimension is the dissipative system: When the diffusion term is absent (i.
Particle image velocimetry (PIV) is an optical method of flow visualization used in education and research. It is used to obtain instantaneous velocity measurements and related properties in fluids. The fluid is seeded with tracer particles which, for sufficiently small particles, are assumed to faithfully follow the flow dynamics (the degree to which the particles faithfully follow the flow is represented by the Stokes number). The fluid with entrained particles is illuminated so that particles are visible.
Active in engineering, consulting and numerical simulations. AEDS is a consulting firm specializing in scientific engineering services related to numerical simulations, with a focus on fluid dynamics, acoustics, and heat transfer.
Active in control engineering, optimization and automation. Online Control specializes in innovative control engineering solutions for optimizing and automating processes in various industries.
Active in numerical simulation, fluid mechanics and structural mechanics. CFS Engineering specializes in Numerical Simulation of Fluid Mechanics and Structural Mechanics Engineering Problems, collaborating with clients to enhance product design and performance.
We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...
The thesis is dedicated to the study of two main partial differential equations (PDEs) in fluid dynamics: the Navier-Stokes equations, which describe the motion of incompressible fluids, and the transport equation with divergence-free velocity fields, whic ...
This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
A physical quantity (or simply quantity) is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a numerical value and a unit of measurement. For example, the physical quantity mass, symbol m, can be quantified as m=n kg, where n is the numerical value and kg is the unit symbol (for kilogram). Following ISO 80000-1, any value or magnitude of a physical quantity is expressed as a comparison to a unit of that quantity.