Publication

Performance Evaluation of an IEEE 802.15.4a Physical Layer with Energy Detection and Multi-User Interference

Abstract

We evaluate the performance of an IEEE 802.15.4a ultra-wide band (UWB) physical layer, with an energy-detection receiver, in the presence of multi-user interference (MUI). A complete packet based system is considered. We take into account packet detection and timing acquisition, the estimation of the power delay profile of the channel, and the recovery of the encoded payload. Energy detectors are known to have a low implementation complexity and to allow for avoiding the complex channel estimation needed by a Rake receiver. However, our results show that MUI severely degrades the performance of the energy detection receiver, even at low traffic rate. We demonstrate that using an IEEE 802.15.4a compliant energy detection receiver significantly diminishes one of the most appealing benefits of UWB, namely its robustness to MUI and thus the possibility to allow parallel transmissions. We further find that timing acquisition and data decoding both equally suffer from MUI.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Optical heterodyne detection
Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or reference light from a "local oscillator" (LO) that would have a fixed offset in frequency and phase from the signal if the latter carried null information. "Heterodyne" signifies more than one frequency, in contrast to the single frequency employed in homodyne detection.
Physical layer
In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to broadcast on, the line code to use and similar low-level parameters, are specified by the physical layer.
Direct-conversion receiver
A direct-conversion receiver (DCR), also known as homodyne, synchrodyne, or zero-IF receiver, is a radio receiver design that demodulates the incoming radio signal using synchronous detection driven by a local oscillator whose frequency is identical to, or very close to the carrier frequency of the intended signal. This is in contrast to the standard superheterodyne receiver where this is accomplished only after an initial conversion to an intermediate frequency.
Show more
Related publications (49)

A Low-Complexity LoRa Synchronization Algorithm Robust to Sampling Time Offsets

Orion Afisiadis, Mathieu Pierre Xhonneux

LoRaWAN is nowadays one of the most popular protocols for low-power Internet of Things communications. Although its physical layer, namely LoRa, has been thoroughly studied in the literature, aspects related to the synchronization of LoRa receivers have re ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Enhancing the Reliability of Dense LoRaWAN Networks With Multi-User Receivers

Andreas Peter Burg, Joachim Tobias Tapparel, Mathieu Pierre Xhonneux

LoRaWAN is a low-power wireless technology that provides long-range connectivity to battery-powered Internet of Things (IoT) devices. To minimize the energy consumption of the IoT nodes, LoRaWAN networks use for the uplink a pure non-slotted ALOHA multiple ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021

Analysis, modeling and design of a CMOS Super-Regenerative Receiver for implanted medical devices under square and sinusoidal quench signals

Catherine Dehollain, Naci Pekçokgüler

Medical implant devices have found widespread application in recent years. The Super-Regenerative Receiver has been one preferred architecture due to its power advantage over other architectures. We present a detailed analysis of the circuits and their equ ...
ELSEVIER SCIENCE BV2019
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.