Publication

Constitutive behavior and fracture toughness properties of the F82H ferritic/martensitic steel

Abstract

A detailed investigation of the constitutive behavior of the International Energy Agency (IEA) program heat of 8 Cr unirradiated F82H ferritic-martensitic steel has been undertaken in the temperature range of 80-723 K. The overall tensile flow stress is decomposed into temperature-dependent and athermal yield stress contributions plus a mildly temperature-dependent strain-hardening component. The fitting forms are based on a phenomenological dislocation mechanics model. This formulation provides a more accurate and physically based representation of the dow stress as a function of the key variables of test temperature, strain and stain rate compared to simple power law treatments. Fracture toughness measurements from small compact tension specimens are also reported and analyzed in terms of a critical stress-critical area local fracture model. (C) 2000 Elsevier Science B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.