Publication

Power-efficient data management for dynamic applications

David Atienza Alonso
2006
Book chapter
Abstract

In recent years, the semiconductor industry has turned its focus towards heterogeneous multi-processor platforms. They are an economically viable solution for coping with the growing setup and manufacturing cost of silicon systems. Furthermore, their inherent flexibility also perfectly supports the emerging market of interactive, mobile data and content services. The platform's performance and energy depend largely on how well the data-dominated services are mapped on the memory subsystem. A crucial aspect thereby is how efficient data is transferred between the different memory layers. Several compilation techniques have been developed to optimally use the available bandwidth. Unfortunately, they do not take the interaction between multiple threads running on the different processors into account, only locally optimize the bandwidth nor deal with the dynamic behavior of these applications. The contributions of this chapter are to outline the main limitations of current techniques and to introduce an approach for dealing with the dynamic multi-threaded of our application domain.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.