Publication

Stability and Convergence of the Level Set Method in Computer Vision

Résumé

Several computer vision problems, like segmentation, tracking and shape modeling, are increasingly being solved using level set methodologies. But the critical issues of stability and convergence have always been neglected in most of the level set implementations. This often leads to either complete breakdown or premature/delayed termination of the curve evolution process, resulting in unsatisfactory results. We present a generic convergence criterion and also a means of determining the optimal time-step involved in the numerical solution of the level set equation. The significant improvement in the performance of level set algorithms, as a result of the proposed changes, is demonstrated using object tracking and shape-contour extraction results.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.