Publication

WSPM: Wavelet-Based Statistical Parametric Mapping

Abstract

Recently, we have introduced an integrated framework that combines wavelet-based processing with statistical testing in the spatial domain. In this paper, we propose two important enhancements of the framework. First, we revisit the underlying paradigm; i.e., that the effect of the wavelet processing can be considered as an adaptive denoising step to “improve” the parameter map, followed by a statistical detection procedure that takes into account the non-linear processing of the data. With an appropriate modification of the framework, we show that it is possible to reduce the bias of the method with respect to the best linear estimate, providing conservative results that are closer to the original data. Second, we propose an extension of our earlier technique that compensates for the lack of shift-invariance of the wavelet transform. We demonstrate experimentally that both enhancements have a positive effect on performance. In particular, we present a reproducibility study for multi-session data that compares WSPM against SPM with different amounts of smoothing. The full approach is available as a toolbox, named WSPM, for the SPM2 software; it takes advantage of multiple options and features of SPM such as the general linear model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Wavelet transform
In mathematics, a wavelet series is a representation of a square-integrable (real- or complex-valued) function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform. A function is called an orthonormal wavelet if it can be used to define a Hilbert basis, that is a complete orthonormal system, for the Hilbert space of square integrable functions.
Discrete wavelet transform
In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Wavelet
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing. For example, a wavelet could be created to have a frequency of Middle C and a short duration of roughly one tenth of a second.
Show more
Related publications (62)

The Sparsity of Cycle Spinning for Wavelet-Based Solutions of Linear Inverse Problems

Michaël Unser, Rahul Parhi

The usual explanation of the efficacy of wavelet-based methods hinges on the sparsity of many real-world objects in the wavelet domain. Yet, standard wavelet-shrinkage techniques for sparse reconstruction are not competitive in practice, one reason being t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Fault Detection and Diagnosis with Imbalanced and Noisy Data: A Hybrid Framework for Rotating Machinery

Amin Kaboli

Fault diagnosis plays an essential role in reducing the maintenance costs of rotating machinery manufacturing systems. In many real applications of fault detection and diagnosis, data tend to be imbalanced, meaning that the number of samples for some fault ...
MDPI2022

Running Speed Estimation Using Shoe-Worn Inertial Sensors: Direct Integration, Linear, and Personalized Model

Kamiar Aminian, Mathieu Pascal Falbriard, Abolfazl Soltani

The overground speed is a key component of running analysis. Today, most speed estimation wearable systems are based on GNSS technology. However, these devices can suffer from sparse communication with the satellites and have a high-power consumption. In t ...
2021
Show more
Related MOOCs (8)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.