Publication

Active Vision for Goal-Oriented Humanoid Robot Walking

Abstract

Complex visual tasks may be tackled with remarkably simple neural architectures generated by a co-evolutionary process of active vision and feature selection. This hypothesis has recently been tested in several robotic applications such as shape discrimination, car driving, indoor/outdoor navigation of a wheeled robot. Here we describe an experiment where this hypothesis is further examined in goal-oriented humanoid bipedal walking task. Hoap-2 humanoid robot equipped with a primitive vision system on its head is evolved while freely interacting with its environment. Unlike wheeled robots, bipedal walking robots are exposed to largely perturbed visual input caused by their own walking dynamics. We show that evolved robots are capable of coping with the dynamics and of accomplishing the task by means of active, efficient camera control.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.