Résumé
Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, to provide locomotion. They are more versatile than wheeled robots and can traverse many different terrains, though these advantages require increased complexity and power consumption. Legged robots often imitate legged animals, such as humans or insects, in an example of biomimicry. Legged robots, or walking machines, are designed for locomotion on rough terrain and require control of leg actuators to maintain balance, sensors to determine foot placement and planning algorithms to determine the direction and speed of movement. The periodic contact of the legs of the robot with the ground is called the gait of the walker. In order to maintain locomotion the center of gravity of the walker must be supported either statically or dynamically. Static support is provided by ensuring the center of gravity is within the support pattern formed by legs in contact with the ground. Dynamic support is provided by keeping the trajectory of the center of gravity located so that it can be repositioned by forces from one or more of its legs. Legged robots can be categorized by the number of limbs they use, which determines gaits available. Many-legged robots tend to be more stable, while fewer legs lends itself to greater maneuverability. One-legged, or pogo stick robots use a hopping motion for navigation. In the 1980s, Carnegie Mellon University developed a one-legged robot to study balance. Berkeley's SALTO is another example. Humanoid robot and Chicken walker Bipedal or two-legged robots exhibit bipedal motion. As such, they face two primary problems: stability control, which refers to a robot's balance, and motion control, which refers to a robot's ability to move. Stability control is particularly difficult for bipedal systems, which must maintain balance in the forward-backward direction even at rest. Some robots, especially toys, solve this problem with large feet, which provide greater stability while reducing mobility.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (192)

Exploration-based model learning with self-attention for risk-sensitive robot control

Sudong Lee

Model-based reinforcement learning for robot control offers the advantages of overcoming concerns on data collection and iterative processes for policy improvement in model-free methods. However, both methods use exploration strategy relying on heuristics ...
2023
Afficher plus
Concepts associés (2)
Robot hexapode
Un robot hexapode est un robot marcheur dont la locomotion est fondée sur trois paires de pattes. L'étude de la marche des insectes est d'un intérêt particulier pour présenter une alternative à l'usage de roues. Le terme se réfère donc aux robots d'inspiration biologique imitant dans le cas présent les animaux hexapodes tels les insectes. Les robots hexapodes sont considérés plus stables que les robots bipèdes du fait que dans la plupart des cas, les hexapodes sont statiquement stables.
Locomotion robotique
La locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.
Cours associés (5)
CS-432: Computational motor control
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, (2) a presentation of different techniques for designing models, and (3) an analy
MICRO-507: Legged robots
The course presents the design, control, and applications of legged robots. It gives a review of different types of legged robots (including two-, four- and multi-legged robots), and an analysis of di
CS-503: Visual intelligence : machines and minds
The course will discuss classic material as well as recent advances in computer vision and machine learning relevant to processing visual data -- with a primary focus on embodied intelligence and visi
Afficher plus
Séances de cours associées (13)
Optimisation de la trajectoire stochastique non linéaire
Couvre la planification de trajectoires multi-contacts pour les robots legged, la dynamique de l'élan centroïdal, et les contraintes de sensibilisation à l'incertitude.
Rétroaction et adaptation
Explore la rétroaction et l'adaptation dans l'intelligence visuelle, améliorant la performance de la machine dans des environnements dynamiques.
Riemannian Geometry: Robot Motion Learning and Control
Déplacez-vous dans la géométrie de Riemannian pour l'apprentissage et le contrôle du mouvement robot, en mettant l'accent sur les synergies géodésiques et le collecteur d'espace de configuration.
Afficher plus