Publication

The pigtailing approach to optical detection in capillary electrophoresis

1994
Journal paper
Abstract

A novel approach, called pigtailing, is presented for the construction of optical detectors for capillary electrophoresis. Optical components and procedures from other fields, mainly telecommunications, are incorporated into these devices to give miniaturized detection systems. Suitable light sources for the construction of pigtail absorbance, fluorescence, refractive index and thermo-optical detectors are light-emitting diodes (LEDs) and laser diodes. The best optical components are gradient-index lenses, optical fibers or diffractive optical elements. These components are joined to the capillary with refractive-index-matching materials to avoid refraction and reflections at the optical interfaces and to reduce mechanical vibrations. These joints also facilitate fast thermal equilibrium. The performance of absorption detectors depends mainly on the brightness of the selected LEDs. Two types of refractive-index capillary detectors are described: one features a single-mode polarization-preserving fiber whereas the second uses a customized holographic plate as the main optical element.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Refractive index
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, n1 sin θ1 = n2 sin θ2, where θ1 and θ2 are the angle of incidence and angle of refraction, respectively, of a ray crossing the interface between two media with refractive indices n1 and n2.
Light-emitting diode
A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.
Laser diode
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction. Driven by voltage, the doped p–n-transition allows for recombination of an electron with a hole. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission.
Show more
Related publications (68)

van der Waals Materials for Overcoming Fundamental Limitations in Photonic Integrated Circuitry

Arslan Mazitov

With the advance of on-chip nanophotonics, there is a high demand for high-refractive-index and low-loss materials. Currently, this technology is dominated by silicon, but van der Waals (vdW) materials with a high refractive index can offer a very advanced ...
AMER CHEMICAL SOC2023

Glass-in-glass infiltration for 3D micro-optical composite components

Andreas Mortensen, Yves Bellouard, Jérôme Faist, Gözden Torun, Enrico Casamenti, Luciano Borasi, Mathieu Bertrand

Chalcogenide glass exhibits a wide transmission window in the infrared range, a high refractive index, and nonlinear optical properties; however, due to its poor mechanical properties and low chemical and environmental stability, producing three-dimensiona ...
2022

Exploring nonlinearities in multimode optical fibers for lasers and computing

Ugur Tegin

Multimode optical fibers are the backbone of telecommunication and medical imaging. When light with high intensity travels through a multimode fiber, photons and matter start to interact and propa-gation becomes nonlinear. The nonlinear propagation of ligh ...
EPFL2021
Show more
Related MOOCs (3)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
Signs and LED displays
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.