Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This paper describes a two-sweep control design method to stabilize the acrobot, an input-affine under-actuated system, at the upper equilibrium point. In the forward sweep, the system is successively reduced, one dimension at a time, until a two-dimensional system is obtained. At each step of the reduction process, a quotient is taken along one-dimensional integral manifolds of the input vector field. This decomposes the current manifold into classes of equivalence that constitute a quotient manifold of reduced dimension. The input to a given step becomes the representative of the previous-step equivalence class, and a new input vector field can be defined on the tangent of the quotient manifold. The representatives remain undefined throughout the forward sweep. During the backward sweep, the controller is designed recursively, starting with the two- dimensional system. At each step of the recursion, a well-chosen representative of the equivalence class ahead of the current level of recursion is chosen, so as to guarantee stability of the current step. Therefore, this stabilizes the global system once the backward sweep is complete. Although stability can only be guaranteed locally around the upper equilibrium point, the domain of attraction can be enlarged to include the lower equilibrium point, thereby allowing a swing-up implementation. As a result, the controller does not require switching, which is illustrated in simulation. The controller has four tuning parameters, which helps shape the closed-loop behavior.
, ,