Publication

Enabling Secure Secret Sharing in Distributed Online Social Networks

Abstract

We study a new application of threshold-based secret sharing in a distributed online social network (DOSN), where users need a means to back up and recover their private keys in a network of untrusted servers. Using a simple threshold-based secret sharing in such an environment is insufficiently secured since delegates keeping the secret shares may collude to steal the user's private keys. Adversary can then take control of users' machines, infect them with malicious software, and use them for further attacks. This can lead to an epidemic that makes the whole system eventually collapse. To mitigate this problem, we propose using different techniques to improve the system security: by selecting only the most reliable delegates for keeping these shares and further by encrypting the shares with passwords. We develop a mechanism to select the most reliable delegates based on an effective trust measure. Specifically, relationships among the secret owner, delegate candidates and their related friends are used to estimate the trustworthiness of a delegate. This trust measure minimizes the likelihood of the secret being stolen by an adversary and is shown to be effective against various collusive attacks. Extensive simulations show that the proposed trust-based delegate selection performs very well in highly vulnerable environments where the adversary controls many nodes with different distributions and even with spreading of infections in the network. In fact, the number of keys lost is very low under extremely pessimistic assumptions of the adversary model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (29)
Secret sharing
Secret sharing (also called secret splitting) refers to methods for distributing a secret among a group, in such a way that no individual holds any intelligible information about the secret, but when a sufficient number of individuals combine their 'shares', the secret may be reconstructed. Whereas insecure secret sharing allows an attacker to gain more information with each share, secure secret sharing is 'all or nothing' (where 'all' means the necessary number of shares).
Secure multi-party computation
Secure multi-party computation (also known as secure computation, multi-party computation (MPC) or privacy-preserving computation) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants (an eavesdropper on the sender and receiver), the cryptography in this model protects participants' privacy from each other.
Shamir's secret sharing
Shamir's secret sharing (SSS) is an efficient secret sharing algorithm for distributing private information (the "secret") among a group so that the secret cannot be revealed unless a quorum of the group acts together to pool their knowledge. To achieve this, the secret is mathematically divided into parts (the "shares") from which the secret can be reassembled only when a sufficient number of shares are combined.
Show more
Related publications (34)

Secure and Efficient Cryptographic Algorithms in a Quantum World

Loïs Evan Huguenin-Dumittan

Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA. However, in the last few years, progress made in quantum physics -- and mor ...
EPFL2024

On the Theory and Practice of Modern Secure Messaging

Daniel Patrick Collins

Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
EPFL2024

Optimal Symmetric Ratcheting for Secure Communication

Serge Vaudenay, Andrea Felice Caforio, Daniel Patrick Collins, Hailun Yan

To mitigate state exposure threats to long-lived instant messaging sessions, ratcheting was introduced, which is used in practice in protocols like Signal. However, existing ratcheting protocols generally come with a high cost. Recently, Caforio et al. pro ...
OXFORD UNIV PRESS2022
Show more