Publication

Differentially private multi-agent constraint optimization

Abstract

Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as vehicle routing, radio frequency assignments, and distributed scheduling of meetings. However, optimization scenarios may involve multiple agents wanting to protect their preferences' privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide improved privacy protection through cryptographic primitives such as partial homomorphic encryption, secret-sharing, and secure multiparty computation. These privacy benefits come at the expense of high computational complexity. Moreover, such an approach does not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the computation may compromise agents' preferences. In this work, we show how to achieve privacy, specifically Differential Privacy, by randomizing the solving process. In particular, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees with much higher computational efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and meeting-scheduling show P-Gibbs' privacy and performance trade-off for varying privacy budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs provides fair solutions for competitive privacy budgets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Privacy
Privacy (UK, US) is the ability of an individual or group to seclude themselves or information about themselves, and thereby express themselves selectively. The domain of privacy partially overlaps with security, which can include the concepts of appropriate use and protection of information. Privacy may also take the form of bodily integrity. There have been many different conceptions of privacy throughout history. Most cultures recognize the right of an individual to withhold aspects of their personal lives from public record.
Secure multi-party computation
Secure multi-party computation (also known as secure computation, multi-party computation (MPC) or privacy-preserving computation) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants (an eavesdropper on the sender and receiver), the cryptography in this model protects participants' privacy from each other.
Internet privacy
Internet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance enabled by the emergence of computer technologies. Privacy can entail either personally identifiable information (PII) or non-PII information such as a site visitor's behaviour on a website.
Show more
Related publications (45)

Optimization Algorithms for Decentralized, Distributed and Collaborative Machine Learning

Anastasiia Koloskova

Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
EPFL2024

Bridging the gap between theoretical and practical privacy technologies for at-risk populations

Kasra Edalatnejadkhamene

With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...
EPFL2023

Thwarting Malicious Adversaries in Homomorphic Encryption Pipelines

Sylvain Chatel

Homomorphic Encryption (HE) enables computations to be executed directly on encrypted data. As such, it is an auspicious solution for protecting the confidentiality of sensitive data without impeding its usability. However, HE does not provide any guarante ...
EPFL2023
Show more
Related MOOCs (1)
Humanitarian Action in the Digital Age
The first MOOC about responsible use of technology for humanitarians. Learn about technology and identify risks and opportunities when designing digital solutions.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.