Publication

Disparity Search Range Estimation: Enforcing Temporal Consistency

Zafer Arican
2010
Conference paper
Abstract

This paper presents a new approach for estimating the disparity search range in stereo video that enforces temporal consistency. Reliable search range estimation is very important since an incorrect estimate causes most stereo matching methods to get trapped in local minima or produce unstable results over time. In this work, the search range is estimated based on a disparity histogram that is generated with sparse feature matching algorithms such as SURF. To achieve more stable results over time, we further propose to enforce temporal consistency by calculating a weighted sum of temporally- neighboring histograms, where the weights are determined by the similarity of depth distribution between frames. Experimental results show that this proposed method yields accurate disparity search ranges for several challenging stereo videos and is robust to various forms of noise, scene complexity and camera configurations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (24)
Scale-invariant feature transform
The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, , 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database.
Feature (computer vision)
In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Stereoscopy
Stereoscopy (also called stereoscopics, or stereo imaging) is a technique for creating or enhancing the illusion of depth in an image by means of stereopsis for binocular vision. The word stereoscopy derives . Any stereoscopic image is called a stereogram. Originally, stereogram referred to a pair of stereo images which could be viewed using a stereoscope. Most stereoscopic methods present a pair of two-dimensional images to the viewer. The left image is presented to the left eye and the right image is presented to the right eye.
Show more
Related publications (32)

Neural Distributed Image Compression with Cross-Attention Feature Alignment

Ali Garjani

We consider the problem of compressing an information source when a correlated one is available as side information only at the decoder side, which is a special case of the distributed source coding problem in information theory. In particular, we consider ...
IEEE COMPUTER SOC2023

Unsupervised Visual Entity Abstraction towards 2D and 3D Compositional Models

Beril Besbinar

Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...
EPFL2022

3DPD: A photogrammetric pipeline for a PUSH frame stereo cameras

Nicolas Le Thomas

An innovative photogrammetric pipeline has been developed by INAF-Padova for the processing of the stereo images from the CaSSIS (Colour and Stereo Imaging System) (Thomas et al., 2014). CaSSIS is the multispectral stereo push frame camera on board ExoMars ...
PERGAMON-ELSEVIER SCIENCE LTD2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.