Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In perceptual learning, performance usually improves when observers train with one type of stimulus, for example, a bisection stimulus. Roving denotes the situation when, instead of one, two or more types of stimuli are presented randomly interleaved, for example, a bisection stimulus and a vernier. For some combinations of stimulus types, performance improves in roving situations whereas for others it does not. To investigate when roving impedes perceptual learning, we conducted four experiments. Performance improved, for example, when we roved a bisection stimulus and a vernier but not when we roved certain types of bisection stimuli. We propose that roving hinders perceptual learning when the stimulus types are clearly distinct from each other but still excite overlapping but not identical neural populations.
Martin Odersky, Aleksander Slawomir Boruch-Gruszecki, Ondrej Lhoták
Matthias Wolf, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Srikanth Ramaswamy, Michael Reimann, Daniel Keller, Werner Alfons Hilda Van Geit, James Gonzalo King, Pramod Shivaji Kumbhar, Alexis Arnaudon, Jean-Denis Georges Emile Courcol, Rajnish Ranjan, Armando Romani, András Ecker, Michael Emiel Gevaert, Vishal Sood, Sirio Bolaños Puchet, James Bryden Isbister, Judit Planas Carbonell, Daniela Egas Santander, Maria Reva, Genrich Ivaska, Natali Barros Zulaica, Mustafa Anil Tuncel, Christoph Pokorny, Elvis Boci, Jorge Blanco Alonso, Aleksandra Zuzanna Teska, Darshan Mandge, Polina Litvak, Gianluca Ficarelli, Weina Ji, Giuseppe Chindemi, Christian Andreas Rössert, Omar Awile, Joni Henrikki Herttuainen, Samuel Lieven D. Lapere, Thomas Brice Delemontex, Tanguy Pierre Louis Damart, Alexander Dietz