Publication

Solving an Avionics Real-Time Scheduling Problem by Advanced IP-Methods

Abstract

We report on the solution of a real-time scheduling problem that arises in the design of software-based operation control of aircraft. A set of tasks has to be distributed on a minimum number of machines and offsets of the tasks have to be computed. The tasks emit jobs periodically starting at their offset and then need to be executed on the machines without any delay. Also, further constraints in terms of memory usage and redundancy requirements have to be met. Approaches based on standard integer programming formulations fail to solve our real-world instances. By exploiting structural insights of the problem we obtain an IP-formulation and primal heuristics that together solve the real-world instances to optimality and outperform text-book approaches by several orders of magnitude. Our methods lead, for the first time, to an industry strength tool to optimally schedule aircraft sized problems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.