Publication

Impact of secondary gas-phase reactions on microcrystalline silicon solar cells deposited at high rate

Abstract

The role of secondary gas-phase reactions during plasma-enhanced chemical vapor deposition of microcrystalline silicon is a controversial subject. In this paper, we show that the enhancement of such reactions is associated with the improvement of material properties of absorber layers deposited at high constant rate. We detect powder, a product of secondary gas-phase reactions, via infrared laser absorption spectroscopy, laser light scattering, and optical emission spectroscopy. As the powder formation is increased, we measure a systematic improvement of device performance. This demonstrates that secondary gas-phase reactions are not detrimental to the material quality of microcrystalline silicon deposited at high rate. © 2010 American Institute of Physics.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.