Publication

Hitting Simplices with Points in $R^3$

Abdul Basit
2010
Journal paper
Abstract

The so-called first selection lemma states the following: given any set P of n points in a"e (d) , there exists a point in a"e (d) contained in at least c (d) n (d+1)-O(n (d) ) simplices spanned by P, where the constant c (d) depends on d. We present improved bounds on the first selection lemma in a"e(3). In particular, we prove that c (3)a parts per thousand yen0.00227, improving the previous best result of c (3)a parts per thousand yen0.00162 by Wagner (On k-sets and applications. Ph.D. thesis, ETH Zurich, 2003). This makes progress, for the three-dimensional case, on the open problems of Bukh et al. (Stabbing simplices by points and flats. Discrete Comput. Geom., 2010) (where it is proven that c (3)a parts per thousand currency sign1/4(4)a parts per thousand 0.00390) and Boros and Furedi (The number of triangles covering the center of an n-set. Geom. Dedic. 17(1):69-77, 1984) (where the two-dimensional case was settled).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.