Publication

Atom-wall dispersive forces: a microscopic approach

2009
Journal paper
Abstract

We present a study of atom-wall interactions in non-relativistic quantum electrodynamics by functional integral methods. The Feynman-Kac path integral representation is generalized when the particle interacts with a radiation field, providing an additional effective potential that contains all the interactions induced by the field. We show how one can retrieve the standard van der Waals, Casimir-Polder and classical Lifshiftz forces in this formalism for an atom in its ground state. Moreover, when electrostatic interactions are screened in the medium, we find low-temperature corrections that are not included in the Lifshitz theory of fluctuating forces and are opposite to them.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.