**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Path integral formulation

Summary

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization. Unlike previous methods, the path integral allows one to easily change coordinates between very different canonical descriptions of the same quantum system. Another advantage is that it is in practice easier to guess the correct form of the Lagrangian of a theory, which naturally enters the path integrals (for interactions of a certain type, these are coordinate space

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (100)

Loading

Loading

Loading

Related people (10)

Related concepts (98)

Quantum field theory

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to cons

Quantum mechanics

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quan

Schrödinger equation

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantu

Related units (7)

This is an overview of a program of stochastic deformation of the mathematical tools of classical mechanics, in the Lagrangian and Hamiltonian approaches. It can also be regarded as a stochastic version of Geometric Mechanics.The main idea is to construct well defined probability measures strongly inspired by Feynman Path integral method in Quantum Mechanics. In contrast with other approaches, this deformation preserves the invariance under time reversal of the underlying classical (conservative) dynamical systems.

2012Related lectures (155)

Related courses (65)

Ce cours présente une introduction aux méthodes d'approximation utilisées pour la simulation numérique en mécanique des fluides.
Les concepts fondamentaux sont présentés dans le cadre de la méthode des différences finies puis étendus à celles des éléments finis et spectraux.

Participants of this course will master computational techniques frequently used in mathematical finance applications. Emphasis will be put on the implementation and practical aspects.

L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à appliquer cette méthode à des cas simples et à l'exploiter pour résoudre les problèmes de la pratique.

This work addresses nonlinear finite element analysis of laminated structures with weak interfaces. Considered first are shallow laminated beams subject to arbitrary large displacements, small layer strains and moderate interface slippage. Under these requirements rigorous development of layer-wise kinematic field is performed assuming First order Shear Deformation Theory (FSDT) at the layer level. The final form of this field is highly nonlinear and thus awkward in direct finite element (FE) implementation. However, the small strain assumption allows decomposition of element displacements into large rigid-body-motion and small deforming displacement field. In this case, the conjunction of linearized kinematic relations and the von Kármán strain measure applied in moving element frame allows for robust co-rotational FE formulation. This formulation is here extended to account for material nonlinear behaviour of layers and interfaces. To complete the development, means of obtaining efficient FE implementation are indicated. Discussed topics include the choice of suitable element interpolation schemes, proficient methods of alleviating numerical locking, evaluation of element deforming displacement field and management of layer-wise boundary conditions. In addition, a novel approach is proposed for a posteriori enhancement of the transverse shear stress distribution. Finally, the proposed model is tested with a number of demanding benchmark tests. The above modelling approach is next extended to geometric nonlinear analysis of laminated plates. Constraining plate displacements to be moderate (in von Kármán's sense) and using Total-Lagrangian FE formulation it is shown that the simplicity and robustness of the beam formulation can be preserved also in plate analysis. FE solutions obtained with the adopted approach are again shown to provide reliable results in global and local scale. However, it is also indicated that methods used to alleviate shear locking in single-layer plate elements are not entirely satisfactory in multi-layer ones. Thus, FE implementation allowing for non-regular meshes needs yet to be identified. Considered next is the possibility of extending the developed plate model to the corotational FE analysis of shallow laminated shells. Primary concern here is assuring consistency of 3D rotations of element vectors and matrices. This problem is resolved here by modifying the description of interface displacement field and including vertex rotations in finite element kinematics. With these enhancements FE matrix formulation is constructed to allow geometric nonlinear analysis of shallow laminated shells subject to arbitrary large displacements, small layer strains and moderate interface slippage.

Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer is a curve in the group SE(3) of rigid body displacements, whose energy can be modeled via the Cosserat theory of elastic rods. Cosserat rods are a more detailed version of the classic wormlike-chain (WLC) model, which we show to be more appropriate in short-length scale, or stiff, regimes, where the contributions of extension and shear deformations are not negligible and lead to noteworthy high values for the cyclization probabilities (or J-factors). We therefore observe that the Cosserat framework is a candidate for gaining a better understanding of the enhanced cyclization of short DNA molecules reported in various experiments, which is not satisfactorily explained by WLC-type models. Characterizing the stochastic fluctuations about minimizers of the energy by means of Laplace expansions in a (real) path integral formulation, we develop efficient analytical approximations for the two cases of full looping, in which both end-to-end relative translation and rotation are prescribed, and of marginal looping probabilities, where only end-to-end translation is prescribed. For isotropic Cosserat rods, certain looping boundary value problems admit nonisolated families of critical points of the energy due to an associated continuous symmetry. For the first time, taking inspiration from (imaginary) path integral techniques, a quantum mechanical probabilistic treatment of Goldstone modes in statistical rod mechanics sheds light on J-factor computations for isotropic rods in the semiclassical context. All the results are achieved exploiting appropriate Jacobi fields arising from Gaussian path integrals and show good agreement when compared with intense Monte Carlo simulations for the target examples.