Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The product of resistance, R, and compliance, C (RC time), of the entire pulmonary circulation is constant. It is unknown if this constancy holds for individual lungs. We determined R and C in individual lungs in chronic thromboembolic pulmonary hypertension (CTEPH) patients where resistances differ between both lungs. Also, the contribution of the proximal pulmonary arteries (PA) to total lung compliance was assessed. Patients (n=23) were referred for the evaluation of CTEPH. Pressure was measured by right heart catheterization and flows in the main, left, and right PA by magnetic resonance imaging. Total, left, and right lung resistances were calculated as mean pressure divided by mean flow. Total, left, and right lung compliances were assessed by the pulse pressure method. Proximal compliances were derived from cross-sectional area change DeltaA and systolic-diastolic pressure difference DeltaP (DeltaA/DeltaP) in main, left, and right PA, multiplied by vessel length. The lung with the lowest blood flow was defined "low flow" (LF), the contralateral lung "high flow" (HF). Total resistance was 0.57+/-0.28 mmHg.s(-1).ml(-1), and resistances of LF and HF lungs were 1.57+/-0.2 vs. 1.00+/-0.1 mmHg.s(-1).ml(-1), respectively, P
Nikolaos Stergiopulos, Georgios Rovas, Sokratis Anagnostopoulos, Vasiliki Bikia, Patrick Segers
Nikolaos Stergiopulos, Stamatia Zoi Pagoulatou
Jiancheng Yang, Zhiye Wang, Jun Lu, Zhigang Li, Lin Qi, Ming Li, Bo Du, Yuxuan Sun, Ziyi Liu